K近鄰法(KNN)原理小結(jié)這篇文章,我們討論了KNN的原理和優(yōu)缺點(diǎn),這里我們就從實(shí)踐出發(fā),對(duì)scikit-learn 中KNN相關(guān)的類庫使用做一個(gè)小結(jié)。主要關(guān)注于類庫調(diào)參時(shí)的一個(gè)經(jīng)驗(yàn)總結(jié)。

1. scikit-learn 中KNN相關(guān)的類庫概述

在scikit-learn 中,與近鄰法這一大類相關(guān)的類庫都在sklearn.neighbors包之中。KNN分類樹的類是KNeighborsClassifier,KNN回歸樹的類是KNeighborsRegressor。除此之外,還有KNN的擴(kuò)展,即限定半徑最近鄰分類樹的類RadiusNeighborsClassifier和限定半徑最近鄰回歸樹的類RadiusNeighborsRegressor, 以及最近質(zhì)心分類算法NearestCentroid。

在這些算法中,KNN分類和回歸的類參數(shù)完全一樣。限定半徑最近鄰法分類和回歸的類的主要參數(shù)也和KNN基本一樣。

比較特別是的最近質(zhì)心分類算法,由于它是直接選擇最近質(zhì)心來分類,所以僅有兩個(gè)參數(shù),距離度量和特征選擇距離閾值,比較簡(jiǎn)單,因此后面就不再專門講述最近質(zhì)心分類算法的參數(shù)。

另外幾個(gè)在sklearn.neighbors包中但不是做分類回歸預(yù)測(cè)的類也值得關(guān)注。kneighbors_graph類返回用KNN時(shí)和每個(gè)樣本最近的K個(gè)訓(xùn)練集樣本的位置。radius_neighbors_graph返回用限定半徑最近鄰法時(shí)和每個(gè)樣本在限定半徑內(nèi)的訓(xùn)練集樣本的位置。NearestNeighbors是個(gè)大雜燴,它即可以返回用KNN時(shí)和每個(gè)樣本最近的K個(gè)訓(xùn)練集樣本的位置,也可以返回用限定半徑最近鄰法時(shí)和每個(gè)樣本最近的訓(xùn)練集樣本的位置,常常用在聚類模型中。

2. K近鄰法和限定半徑最近鄰法類庫參數(shù)小結(jié)

本節(jié)對(duì)K近鄰法和限定半徑最近鄰法類庫參數(shù)做一個(gè)總結(jié)。包括KNN分類樹的類KNeighborsClassifier,KNN回歸樹的類KNeighborsRegressor, 限定半徑最近鄰分類樹的類RadiusNeighborsClassifier和限定半徑最近鄰回歸樹的類RadiusNeighborsRegressor。這些類的重要參數(shù)基本相同,因此我們放到一起講。

<big id="rspa8"></big><u id="rspa8"></u>
參數(shù) KNeighborsClassifier KNeighborsRegressor RadiusNeighborsClassifier

延伸閱讀

學(xué)習(xí)是年輕人改變自己的最好方式-Java培訓(xùn),做最負(fù)責(zé)任的教育,學(xué)習(xí)改變命運(yùn),軟件學(xué)習(xí),再就業(yè),大學(xué)生如何就業(yè),幫大學(xué)生找到好工作,lphotoshop培訓(xùn),電腦培訓(xùn),電腦維修培訓(xùn),移動(dòng)軟件開發(fā)培訓(xùn),網(wǎng)站設(shè)計(jì)培訓(xùn),網(wǎng)站建設(shè)培訓(xùn)學(xué)習(xí)是年輕人改變自己的最好方式

我想了解如何學(xué)習(xí)

姓名:
手機(jī):
留言: